The Skin Care Answer Book
Real-World Answers to 275 Most-Asked Skin Care Questions

Mark Lees, Ph.D.
This book is dedicated to my mother, Dr. Virginia Lees. Thank you for your teaching and communication skills!
1. Understanding the Skin
Is the outside of the skin really dead?
How does the skin renew itself?
Is any part of the skin alive?
So, how many layers are there in the skin?
How thick is the skin?
Why does skin get dry and chapped?
What does barrier function mean?
How does the barrier function form?
What can damage the barrier function?
What are the symptoms of impaired barrier function?
Does the barrier function affect the esthetic appearance of the skin?
Can the barrier function be improved?
Why does the skin make oil (sebum)?
Why does the skin have pores?
Why do some people have bigger pores than others?
Is there a difference between facial and body skin?
Are there differences between male and female skin?
Why does the skin get hot and cold?
Why does the skin tan?
Why are there so many skin colors? 15
What is collagen and where does it come from? 16
What is the difference between elastin and collagen? 17
How does the skin heal after a cut? 18
Why does the skin sometimes scar after an injury? 19

2. Aging and Photo-Aging Skin 21
What actually causes wrinkles? 22
Is there more than one type of skin wrinkling? 22
What causes skin to sag when it gets older? 22
How much does heredity have to do with how someone's skin ages? 23
What does skin color have to do with aging? 23
What is the difference between extrinsic and intrinsic skin aging? 26
How can you tell which aging symptoms are extrinsic and which intrinsic? 26
How is inflammation related to skin aging symptoms? 27
What can be done to control inflammation in the skin? 28
What role do hormones play in skin aging? 29
Why does older skin have age spots? 29
Is barrier function a factor in mature skin? 30
What can be done to help the appearance of the aging skin? 30
What should I look for in a good sunscreen product for me? 32
Is it important that the sunscreen is water-resistant? 33
Why is UVA and UVB broad-spectrum protection important? 33
What can be done to improve the barrier function of aging skin? 34
What are the benefits of using topical antioxidants? 35
What are some popular antioxidant ingredients and which are the best? 36
What should I look for in an antioxidant product? 36
What effect does daily chemical exfoliation have on aging skin? 37
3. Acne and Acne-Prone Skin 49

Why do pores develop? 50
What role does heredity play in oily and acne-prone skin? 51
What causes blackheads? 52
Are the tiny clogged pores I get on my nose the same as open comedones? 53
How does a pimple form? 54
Can skin care products cause or worsen acne or clogged pores? 56
What are some ingredients that are comedogenic? 57
Why would a company use a comedogenic ingredient in a product? 58
What causes overnight zits? 58
Is there anything to look for on a product label to make sure the product is non-comedogenic and non-acnegenic? 59
How do you avoid acnegenic reactions? 59
I have a lot of little bumps under the skin. What are these? 59
What can be done to help clear these hair product–related bumps? 60
What are the basic treatment concepts for treating acne topically? 61
Which treatment concept is the most important? 62
What is a typical skin care regimen for acne-prone skin? 62
What is the best makeup for acne? 65
How long will it take my acne to clear? 66
Why does acne start at puberty? 66
Why do some people never have acne problems until they are in their 20s? 67
What causes pre-period breakouts? 68
Is there anything that can be done to alleviate or prevent premenstrual breakouts? 68
How does stress affect acne? 69
Can facials help acne? 70
What type of facial might be irritating for acne? 70
What should a good acne or oily-skin facial include? 70
How often are extraction treatments recommended? 72
What about professional exfoliation treatments for acne? 73
Does what I eat really affect acne or cause flares? 73
Why are dairy foods a problem for some people with acne? 75
Does picking make acne worse? 75
How is acne excoriée treated? 76
Why do I have red marks for weeks and weeks after a pimple has cleared? 76
Is there any treatment to speed up the fading of the redness? 77
I have acne-prone skin, but my skin is sensitive and reddens and dries out easily. Are there any special techniques I should use to treat my skin? 77
I have skin that has many clogged pores, but I rarely have pimples. What would be my best course of treatment? 77
Is there anything that will really shrink pores? 79
I have acne-prone skin, but I am also worried about aging. Can I help reduce the signs of aging without flaring my acne? 79
How important is cleansing for acne-prone skin? 80
When should I go to a dermatologist? 80
How does medical treatment for acne differ from over-the-counter or esthetic treatment? 81
4. Sensitive, Redness-, and Allergy-Prone Skin 83

What is sensitive skin? 84
Is sensitive skin hereditary? 84
Why does sensitive skin turn red easily? 85
Why does thin skin constantly look pink? 85
Does the condition of the barrier function affect redness? 85
Can improving the barrier function decrease redness? 85
What are the basic concepts for treating sensitive skin? 86
Are there specific ingredients helpful for sensitive skin? 87
I get really red after I get my lip waxed and sometimes stay red for hours. Is there something I can do to avoid this? 88
Are “broken” capillaries really broken? 89
What causes distended capillaries? 89
My doctor says I have rosacea. Can you tell me about rosacea? 90
What can be done to help rosacea? 91
My nose gets really red when I drink red wine. Is this rosacea? 94
My rosacea seems to flare when I exercise. Does this make any sense? 94
Why does heat have such a strong effect on sensitive skin? 94
What type of skin care program should I use if I have rosacea? 95
What are medical treatments for rosacea? 96
What causes skin allergies? 96
Are there skin care ingredients that frequently cause allergies? 97
Are natural products less likely to cause allergies? 97
What is the difference between an allergic and an irritant reaction? 98
Can you exfoliate sensitive skin? 98
Does what I eat help or hurt my sensitive skin? 99
Are there facial treatments that should be avoided for sensitive skin or clients with rosacea? 99
5. **Dry Skin** 103
 - What causes dry skin? 104
 - Is there more than one type of dry skin? 105
 - Is barrier function important in dry skin treatment? 106
 - Does skin get drier with age? 106
 - Does dry skin cause wrinkles? 107
 - What are basic concepts in correctly treating dry skin? 108
 - What is the specific role of emollient ingredients in the treatment of dry skin? 110
 - What are commonly used humectants for treating dry or dehydrated skin? 110
 - Why does dry skin get worse in the winter months? 111
 - Is there anything I can do to avoid winter dryness? 111
 - Do room humidifiers help dry skin? 112
 - Does flying in a plane make skin drier? 112
 - Why does my skin seem so dry and tight when I get out of the shower? 112
 - Why do soaps seem to make my dry skin worse? 113
 - Are there special cleansers for dry skin? What makes them special? 113
 - Do bath oils help dry skin? 113
 - What kind of moisturizer should I choose for dry skin? 114
 - Are there ingredients or products that I should avoid for dry skin? 114
 - What is a good step-by-step home care program for dry skin? 115
 - Why does dry skin itch? 116
 - Does it help to exfoliate dry skin? 116
 - What type of facial treatments can help dry skin? 117
 - Do steam treatments help dry skin? 117
 - Are peels helpful for dry skin? 117
 - Is massage helpful for dry skin? 118

6. **Sun Care** 119
 - Why is it important to wear sunscreen every day? 120
 - Why do I need a sunscreen if I am not outside? 121
I have naturally dark-pigmented skin. Do I need to wear a sunscreen every day? 121
When should children begin using sunscreen? 122
What is the difference between UVA and UVB sunrays? 122
How do sunscreens work? 123
What does *broad-spectrum* mean? 124
What does *SPF* mean? 125
Which is the best SPF to prevent damage? 125
Do higher SPFs filter more spectrum of UV light? 125
What is the difference between a sunscreen and a sunblock? 126
Has global warming and the thinning of the ozone layer made UV exposure worse? 126
What type of ray is used in tanning beds and booths? 126
Is it okay to use a daily sunscreen that is also my moisturizer? 126
What should I look for in a good sunscreen? 127
Are antioxidants effective sunscreens? 127
Some makeup foundations have sunscreen in them. Is this enough protection? 127
Should I choose a water-resistant sunscreen? 128
Is there a difference between sunscreens intended for the face versus the body? 128
How much sunscreen should I use? 129
How often should I reapply sunscreen? 129
Do sunscreens expire? 129
Are some people allergic to sunscreens? 129
Does cloudy weather make sun less intense? 130
Are you less likely to get sunburn in the winter? 130
Are there “safer” times of the day for outdoor activities? 131
Does clothing provide any protection? 131
Is there any way to get a “safe” tan? 132
What about “sunless” and spray tans? Are they safe? How do they work? 132
How should the skin be treated if it is sunburned? 132
Are there products you can apply after sunning to minimize damage? 133
7. Dark Spots/Pigment Problems 135

What causes dark splotches on the skin? 136
What makes the skin produce more melanin? 136
How is splotching a part of aging skin? 137
Is hyperpigmentation more of a problem for males or females? 138
What is a pregnancy mask? Do you have to be pregnant to have one? 138
Is heat a factor in dark spots? 140
Is there a hereditary factor in hyperpigmentation? 140
Is dark skin more likely to have a problem with hyperpigmentation? 140
Why do I get dark spots where I have had pimples? 140
Can picking at my skin cause dark spots? 142
What can I do to avoid getting spots where I have had pimples? 142
I have some stiff, unwanted hairs on my chin. I try to keep them plucked, but I often get dark spots in the same area. What causes these dark spots? 143
What are “liver spots”? 144
What are the concepts in treating hyperpigmented skin? 144
What is a melanin suppressant? 145
Is there more than one type of melanin suppressant? 146
Is topical vitamin C helpful in treating hyperpigmentation? 146
Are peels helpful in treating hyperpigmentation? 146
How often should AHA peels be performed for hyperpigmentation? 147
Can aggressive peels make hyperpigmentation worse? 147
Are there medical treatments for hyperpigmentation? 148
Can I continue my salon peels while I am having medical treatment? 149
What about light spots that seem to be missing pigment? What causes these? 149
8. Skin Care Products and Ingredients 151

Why do some cleansers foam while others don’t? 152
What are some surfactants commonly used for cleansing that I may see on an ingredient label? 152
How do I choose the best cleanser for my skin? 153
Should I use cold or hot water to clean my skin? Doesn’t hot water kill bacteria and open pores? 154
Should I use a cleansing cloth or sponge when I clean my face? 154
I don’t feel clean unless I have washed my face. Is it okay to wash my face after I remove the makeup with a cleansing milk? 155
What do toners do? Do I really need a toner? 155
What ingredients should I look for in a good moisturizer? 155
Why are some moisturizers creams and some lotions? 156
My dermatologist recommended a moisturizing lotion that contains petrolatum. Isn’t petrolatum clogging to the skin? 157
My moisturizer has cetyl alcohol in it. Isn’t alcohol drying to the skin? 157
Is there any real difference between a moisturizer and an eye cream? 158
What are peptides? 158
Is there more than one kind of peptide? 159
What do exfoliators do? 159
Is there more than one type of exfoliant? 159
What are the benefits of using an alpha hydroxy acid treatment product? 160
What should I look for in an alpha hydroxy acid home care treatment product? 161
Are there any precautions for using alpha hydroxy acid products? 162
What are liposomes? How do they work? 163
What are antioxidants and why are they so important for the skin? 164
Are topical vitamins effective for the skin? How do they help? 164
Are there certain things I should look for in a good antioxidant product? 166
Are there ingredients to treat redness? 167
Why are preservatives used in skin care and cosmetic products? 167
How important is it to buy “natural” skin care? 168
Are there any bad ingredients that everyone should avoid? 169

9. Your Personal Skin Analysis 171
How can I tell if I have oily, dry, or combination skin? 172
Why do people have different skin types? 174
Are there varying degrees of oiliness or dryness in individuals? 174
What is “normal skin”? 175
If I have combination skin, do I treat it as oily or dry? 175
I am oily by 11 a.m. Does that mean I have oily skin? 175
Do I really need a moisturizer if I have oily skin? 176
I seem to have oily skin, but the surface seems really dry. Is it possible to have oily and dry skin in the same area? 176
How do you treat dehydrated, oily skin? 176
What are those little bumps I get in my blush line? 177
What can I do to clear these blush line bumps? 177
I break out easily. Does that mean I have sensitive skin? 178
My skin develops clogs easily, but I am 40 and worried about aging. I try a lot of antiaging products, but they seem to make my clogged pores worse. Is there a solution for this? 179
I have bad bags under my eyes. What can help these? 179
Is there a more permanent solution for eye bags? 180
I don’t have bags under my eyes, but I have problems with dark circles. What causes these? 181
How can I tell if my circles are due to hyperpigmentation or blood circulation? 181
How can you treat the different types of eye circle darkness? 182
Now that I am in my late 20s, my skin doesn’t seem to be one color any more. It seems like it’s frecklier than it was just a few years ago. Is there something I can do about this? 182
I get red easily—my skin seems to react to things more than most people’s skin. Are there things I should do or not do? 183

Are there skin care products I should use that might help with the redness? 184

I have obvious capillaries on the sides of my nostrils. What causes these and how can I treat them? 185

I have big, dark, red splotches on the sides of my neck. They almost look like a horseshoe pattern. What are these splotches? 185

Can anything be done to help the appearance of poikiloderma? 186

I had too much sun in my 20s and 30s and am now suffering the results. Can you recommend a regimen for my skin? 186

How often should I clean my skin? 187

What is the best way to remove facial hair? 188

What is the best way to find a good esthetician or skin therapist? 189

I have never had a professional facial treatment before. What are the basics of a professional facial? 190

How often should I have a professional facial treatment? 192

10. Problems That Need a Doctor 195

My acne never seems to completely clear. I constantly have pimples on my chin and jaw line. What do you suggest? 196

I have had a lot of problems with hormones, which has affected not only my acne-prone skin but also pigment problems (melasma). Is there a type of doctor who specializes in just hormone-related problems? 197

I have oily skin and have several little places that look like blackheads, but there is nothing in them. Some are shaped like little donuts. What are these? 197

Can sebaceous hyperplasias be treated? 197

I get these little red pimples around my chin and mouth. It looks like acne, and the bumps appear in little groups. They do not respond to benzoyl peroxide or any topical treatment. What might these bumps be? 198

Every change of season, I get red, flaky skin around my hairline, the sides and corners of my nose, and sometimes in my eyebrows. Can you tell me what this might be? 199
Are there skin care modifications that should take place for seborrheic dermatitis? 201

I have a little red bump on my nose that keeps coming back. Sometimes it flakes. Once in a while it will bleed when I wash my face. What should I do about this bump? 202

What does skin cancer look like? 202

I am 60 years old and I have some areas on my face and hands that are red and so dry the skin feels prickly, almost like it has little sharp bumps. What are these? 205

I have flat, yellowish bumps around my eyes. What might they be? 206

I am 65 years old and have a large, flat, crusty-looking spot on my cheekbone. Can you tell me what you think this might be? 207

What causes enlarged capillaries? 208

What medical treatment options are available for enlarged capillaries? 208

If a person has had a lot of sun over his or her lifetime, how often should he or she have a dermatologist’s checkup? 208

Are there effective treatments now available for birthmarks? 209

I have scars from acne. What can be done about these? 209

Can microdermabrasion help with acne scarring? 210

What are the differences between peels I get from my esthetician and peels I might get from a plastic surgeon? 210

Glossary 213

Bibliography 225

Index 227
Dr. Mark Lees is one of the country’s most noted skin care specialists, an award-winning speaker and product developer, and has been actively practicing clinical skin care for over 20 years at his multi-award-winning CIDESCO accredited Florida salon, which has won multiple awards for “Best Facial,” “Best Massage,” and “Best Pampering Place” by the readers of the Pensacola News-Journal.

His professional awards are numerous and include American Salon Magazine Esthetician of the Year, the Les Nouvelles Esthetiques Crystal Award, the Dermascope Legends Award, the Rocco Bellino Award for outstanding education from the Chicago Cosmetology Association, and Best Educational Skin Care Classroom from the Long Beach International Beauty Expo. Dr. Lees has also been inducted into the National Cosmetology Association’s Hall of Renown.

Dr. Lees has been interviewed and quoted by NBC News, The Associated Press, the Discovery Channel, Glamour, Self, Teen, Shape Magazine, and many other publications.

Dr. Lees is cofounder of the Institute of Advanced Clinical Esthetics in Seattle, special science-based advanced training programs for clinical estheticians.

Dr. Lees is former chairman of EstheticsAmerica, the esthetics education division of the National Cosmetology Association, and has served as a CIDESCO International Examiner. He has also served on the national Board of Directors of the NCA.
Dr. Lees is former chairman of the board of the Esthetics Manufacturers and Distributors Alliance, is a member of the Society of Cosmetic Chemists, and is author of the popular book **Skin Care: Beyond the Basics**, now in its third edition, and contributing science author of **Milady’ Comprehensive Training for Estheticians**. He holds a Ph.D. in Health Sciences, a Master of Science in Health, and a CIDESCO International Diploma. He is licensed to practice in both Florida and Washington State. His line of products for problem, sensitive, and sun-damaged skin is available at finer salons and clinics throughout the United States.
Very special thanks to the following people and organizations for contributing in many ways to this book. The author appreciates their efforts.

Martine Edwards, Philip Mandl, and all the team at Milady/Cengage Learning
My incredible team at Mark Lees Skin Care
My wonderful family and friends

Reviewers:
Sophia Camejo, Tarzana, California
Dayspa Magazine, Van Nuys, California
Dermascope Magazine, Garland, Texas
Rebecca James-Gadberry, Instructor of Cosmetic Science,
 UCLA Extension, Los Angeles, California
Derek Jones, M.D., Facial Plastic Surgeon, Pensacola, Florida
Anne Martin, Seattle, Washington
Howard Murad, M.D., Dermatologist, Murad, Inc., Los Angeles, California
Peter Pugliese, M.D., Circadia by Dr. Pugliese; Bernville, Pennsylvania
Revitalight; Chicago, Illinois
Skin, Inc., Carol Stream, Illinois
Denise R. Fuller, Port Saint Lucie, Florida
Dawn Mango, Glens Falls, New York
Elizabeth Myron, Cocoa Beach, Florida
Kimberly Coleman, M. ED., Reflections Body Solutions, Creve Couer, Missouri
Kim Jarrett, B Street Design, School of International Hair Styling, Belton, Missouri
Laura Todd, Institute of Advanced Medical Esthetics, Richmond, Virginia
Sallie Deitz, Bio-Therapeutic, Inc., Seattle, Washington
Pamela Springer, Founder, The Skin & Makeup Institute of Arizona, Peoria, Arizona
Howard Murad, M.D.

Perhaps it is a dermatologist’s bias, but I am often amazed by how little the average person knows about skin. This complex and remarkable fabric is the body’s largest, most visible, and in many ways most vulnerable organ.

In *The Skin Care Answer Book*, Dr. Mark Lees has taken on the enormous challenge of explaining the structure and function of skin, as well as the pathology, symptomatology, and treatment of common skin disorders in terms that both laypeople and skin care professionals can understand. The resulting volume is a clear and concise guide that will make a great contribution to the educational goals of the skin care industry—and will help clear up some culturally ingrained misperceptions about skin and its care.

In my work as a doctor, a professor, and founder of one of America’s leading clinical skin care companies, I have met and collaborated with countless people in the world of skin care, yet few have made the kind of impression on me that Dr. Mark Lees has. There are so many ways in which Dr. Lees has distinguished himself—as a skin care professional, skin care products developer, scholar, educator, author, and industry leader. In each realm, Dr. Lees has focused his intelligence, passion, and creativity to accomplish the extraordinary.

Given Mark’s exceptional background, it is no surprise that *The Skin Care Answer Book* is a thoughtful, well-researched, and comprehensive treatment of issues related to skin and skin
health as well as a user-friendly guide that invites exploration and holds the reader’s attention.

That a guide with the sophistication of *The Skin Care Answer Book* is designed to be used as a reference for esthetics professionals and consumers reminds us of how far the world of esthetics has come and of the many ways that barriers between medical and esthetic care have fallen by the wayside. In many ways, both Dr. Lees and I were pioneering advocates for these changes, and our collaborations over the years are prime examples of what can be accomplished when skin care professionals can acknowledge the unique contributions that different disciplines can make.

I first met Dr. Lees when I was launching Murad Skin care. Even though Dr. Lees had his own line of products, he was willing to hear me out and let me demonstrate the unique benefits of my revolutionary AHA treatments. I could tell we were kindred spirits by his eagerness to start using the products in his spa immediately. Like me, Dr. Lees was excited to discover something new that could help his clients and wasn’t going to let ego or economics get in the way.

What the reader will find embodied in these pages, and in Dr. Lees himself, is a passion for education that is rooted in a broader passion for helping people have the healthy, vibrant skin that they desire and deserve. That passion is the force that animates the day-to-day operation of his flagship spa, his countless appearances on television and in print, his educational efforts, and his own line of skin care products. Since that same passion for skin health has defined my remarkably rewarding journey, perhaps there is something to be said for putting people before profits as a strategy for success in the world of skin care.

I share Dr. Lees’ fundamental belief that our industry will continue to prosper as long as we continue our commitment to taking care of the unique needs of each individual, work hard to advance the level of professionalism, and remember that the
skin is not only the body’s largest organ—it is the body’s most interconnected organ and a therapeutic gateway to a world of wellness.

Regardless of whether one is looking for a primer on skin care or a ready reference for use as questions arise, *The Skin Care Answer Book* is a must-have volume that reflects the innovative thinking of one of America’s most widely regarded authorities on skin and esthetical care.

Howard Murad, M.D., is an associate clinical professor of dermatology at UCLA, founder of Murad Skincare, Inc., the pioneering researcher who unlocked the secrets of *The Science of Cellular Water*, and the author of the Inclusive Health philosophy.
Since the early 1990s, skin care has become a true science, with many effective topical treatments that change the skin’s appearance. Many of these treatments were only dreamed about prior to this era.

In addition, we are living in the information age, where information is as close as any computer. Unfortunately, there is also much misinformation available online. Rumors and erroneous information abound, and there is a real need to sort the facts. In almost three decades of practice as a clinical skin therapist and skin care product developer, I have had thousands of questions posed to me. There are, however, many questions that I answer over and over.

The Skin Care Answer Book provides the answers to almost 300 of the most-asked skin care questions, plus advice as to when to seek the help of a medical professional. It is a question-and-answer book written for consumers but also can be used by practicing estheticians, skin therapists, dermatology nurses, and skin care educators for quick reference.

Many clients have more than one problem with their skin. I hope that this book will provide good and easy-to-understand information to help them find an answer for their problems. I also hope that it will help everyone have more beautiful and healthy skin for a lifetime.

Mark Lees, Ph.D., M.S.
CIDESCO Diplomate
CHAPTER 1

Understanding the Skin
Q Is the outside of the skin really dead?

A Technically, yes, at least for most of the outermost layer of the skin. However, this outermost layer of the skin, the epidermis, is the first line of defense against dehydration, bacterial invasion, and irritant penetration. You can think of the epidermis as the outside wall of a fort. It is this layer that we take care of when we practice a skin care program.

The cells in the epidermis go through many biochemical changes, and there are many functions of this layer even though most of it is technically dead.

There are three types of active cells in the epidermis: the **basal cells**, the **melanocytes**, and the **Langerhans cells**.

- The melanocytes are the pigment-producing cells that are found in both the lower epidermis and the dermis. Melanocytes give skin its color and are responsible for tanning.
- The Langerhans cells are immune function cells that “patrol” the epidermis to detect foreign invaders or pathogens.
- The basal cells, described in more detail below, are the cells that make new skin cells in the epidermis.

Q How does the skin renew itself?

A The cells in the outer layer of the skin, the epidermis, begin as live cells in the lowest layer of the epidermis known as the **basal layer**. The basal layer used to be called the germinal layer or the stratum germinativum.

The basal cells divide in a biological process called **mitotic division**, forming new, identical cells. These fresh cells are pushed upward due to the mitotic division and begin their journey toward the outside surface of the skin. As they approach the surface, these cells are going through a process called **keratinization**.
During this process, the cells fill with a protein called **keratin**. There are two types of keratin. The type in the epidermal skin cells is soft keratin, which is the same type that is in hair. Hard keratin is present in the fingernails and toenails and gives the strength and ridged feel to these structures. Keratin’s main structure in the skin is to make the skin surface more resilient and resistant to water absorption/evaporation; to resist invasion by foreign substances or organisms, such as bacteria; and to help keep the skin from becoming dry and dehydrated.

During the process of the cells moving from the innermost to the outermost layers of the epidermis, these cells change shape several times and go through several named layers within the epidermis. While in each layer, there are more biochemical changes happening to these epidermal cells.

After leaving the basal layer in their journey toward the skin surface, the cells begin to flatten out and form a layer called the **spiny layer** or **stratum spinosum**. From this layer they move farther upward into a layer called the **granular layer** or **stratum granulosum**, where the cells look “grainy” because they are beginning to be filled with keratin. The last and outermost layer in the epidermis is the **stratum corneum**, also called the **horny layer** due to their appearance under a microscope. The cells in the corneum are much flatter and stacked liked shingles on a roof.

All of the cells going through the process of keratinization are referred to often as **keratinocytes**. This is a general term to describe cells in the epidermis, regardless of layer or stage of the process. Keratinocytes that are specifically in the stratum corneum are called **corneocytes**.

A good analogy for the keratinization process is the transformation of a grape into a raisin. Like a grape, the basal cells are fresh, rounded, and plump. As the grape ages and dries, the structure becomes dehydrated, with hardened denser fibers, and is more resilient and harder. The raisin represents the corneocyte, stacked like shingles on
a roof on the surface of the skin, providing the first line of protection for the skin, preventing penetration of possible harmful or inflammatory substances, and preventing water loss that results in dehydration.

Q Is any part of the skin alive?

A Yes. We have just discussed the epidermis, containing mostly dead or dying cells, but we have also learned how active this layer is biologically.

The skin is actually the largest organ in the human body! The *dermis* of the skin is the layer under the epidermis and is very much alive. The differences between the live layer and dead/dying layers of the skin are as follows:

- The live layer contains blood and blood vessels. The epidermis does not.
- The live layer contains nerve endings that sense heat, cold, pain, pressure, and touch.
- The epidermis sheds and renews itself constantly. The dermis does not shed or have a renewal cycle.

The dermis contains the collagen, elastin, and other support substances that give the skin its structure and form. The dermis also contains blood vessels to nourish the many active and different living cells in this area. These include both arteries and veins. Arteries carry blood to the tissues, and veins return deoxygenated blood to the heart and lungs for reoxygenation.

The dermis is made up of two major layers. The *papillary dermis* is at the top of the dermis and connects the dermis to the epidermis. This attachment point is known as the *epidermal-dermal junction*. The papillary dermis contains many blood capillaries and nerves that are sensitive to the touch. The papillary dermis also contains melanocytes, which are the pigment-producing cells that give skin its color and that are also responsible for tanning.
The reticular dermis is the lower and thicker part of the dermis. The reticular dermis contains collagen that gives firmness to the skin and elastin that gives flexibility and elasticity to the skin. These protein fibers run throughout the reticular dermis.

A filler-like substance called ground substance fills empty spaces in the reticular dermis. This jellylike substance is made of water-binding biochemicals such as glycosaminoglycans, which hold tremendous amounts of water. Hyaluronic acid is an ingredient well known in moisturizers which holds 1,000 times its own weight in water. Hyaluronic acid is a component within the ground substance. Unfortunately, the hyaluronic acid in moisturizers is a large molecule that cannot penetrate the skin or replace dermal ground substance. It can only work on the surface as a water-binder.

Running from the base of the reticular dermis through the papillary layer and the epidermis are the ducts of the sebaceous and sweat glands.

The reticular layer also contains more sensory nerve endings and larger blood vessels that feed the capillaries in the papillary dermis.

The sebaceous glands, the sudoriferous (sweat) glands, and the base of the hair follicle are all in the reticular layer.

Beneath the reticular dermis is another layer called the subcutaneous layer, which contains thicker layers of fat to give the skin protection and to cushion the internal organs. This fat also helps with temperature regulation and insulates the blood vessels and nerve fibers that are also running through this layer.

Q So, how many layers are there in the skin?

A There are three main layers: the epidermis, the dermis, and the subcutaneous layer.
CHAPTER 1 Understanding the Skin

The epidermis has four or five layers, depending on the area of the body:

- The basal layer, where the cells divide, and also where melanocytes are present
- The spinosum or “prickle” layer, just above the basal layer where the keratinization process is beginning
The granular layer that contains grainy-looking cells containing the **lamellar bodies** that produce lipids for the barrier function, the complex of lipids within the epidermis that helps protect the skin from dehydration and irritant invasion.

- The corneum, the outermost layer of the epidermis—the shingles on the roof.
- The stratum lucidum, an additional layer, also sometimes called the “clear layer,” that is between the granular and corneum layers and is only found in the skin of the soles of the feet and palms of the hands.

The dermis contains two main layers:

- The papillary dermis, which attaches to the epidermis, and is therefore the outermost layer of the dermis.
- The reticular dermis, the lower layer in the dermis, containing blood vessels, nerve endings, collagen, and elastin fibers.

The subcutaneous layer is located under the dermis and is a fatty layer that provides structure and cushion for the skin.

Q How thick is the skin?

A This depends on the area of the body. Generally the skin is between 1 millimeter and 5 millimeters thick. The soles of the feet have the thickest skin. The eyelid skin is the thinnest.

The epidermis is very thin. If you have ever had a paper cut, you will know how thin the epidermis is. Remember, there is no blood in the epidermis, so when the skin bleeds, the injury has gone through the epidermis and into the dermis.

Q Why does skin get dry and chapped?

A Exposure to the elements, especially in extreme temperatures, causes water in the skin surface to evaporate, drying
the surface and eventually causing enough damage to pro-
duce chapping. The barrier function of the skin is severely
damaged in chapped skin.

Q What does barrier function mean?

A Barrier function refers to the complex of lipids (fatty
materials such as ceramides, fatty acids, and cholesterol)
that is present between the cells in the corneum. This
lipid barrier guards moisture (transepidermal water loss,
or TEWL) and protects against dehydration, and it also
provides a lipid barrier to prevent irritants from entering
the skin. If you think of the epidermis as a brick wall, the
cells are the bricks and are held together by the mortar
that is the barrier lipid complex, sometimes also referred
to as the intercellular lipid matrix or intercellular
cement. The lipids fill in the gaps between the cells in the
same way mortar fills the spaces between bricks in a wall.

If you have ever accidentally dripped lemon juice on a
chapped place on your hand, you will understand how the
barrier lipid complex (or lack of it, as in chapped skin) pro-
tects the skin. When the skin is chapped, it has lost lipids
in the barrier function, easily allowing the penetration of
irritants such as lemon juice. When the acidic lemon juice hits a nerve ending, it stings and burns.

When the barrier function is fully intact, lemon juice or most irritants cannot easily penetrate the skin surface. Likewise, the skin cannot lose water and become dehydrated when the barrier is intact.

How does the barrier function form?

A The barrier function lipids are formed during the keratinization process. Beginning in the spinosum, structures within the cells that are keratinizing, called lamellar bodies, begin forming. These lamellar bodies eventually produce the lipid complex that over time fills the gaps between the cells in the stratum corneum.

What can damage the barrier function?

A Exposure to elements, especially cold, heat, dry air, and wind, can damage the lipids in the barrier. Sun exposure certainly can also cause an impaired barrier. Skin that is unprotected in the winter will have a strong tendency to become dehydrated due to the destruction of barrier lipids.

Overcleansing or using soaps or cleansers that are too strong for the skin type can damage the barrier. Using or overusing high-foaming detergent cleansers can strip the skin of protective sebum, and it then begins slowly stripping the fats within the barrier function.

Likewise, over-exfoliation can strip too many surface corneum cells and along with these cells, the barrier lipids are also depleted.

Sun and exposure to cold, low humidity, or wind can also severely impair the barrier. Cumulative sun damage can severely affect the cell renewal cycle, which is how the lipids are naturally formed.

When the barrier function is damaged, it is said to be impaired.
What are the symptoms of impaired barrier function?

There are many symptoms of impaired barrier function, and they may vary with the skin type, severity of impairment, and other related skin conditions. For example, people who have rosacea often have skin barrier impairment problems. Impaired barrier function can affect sensitivity, inflammation, skin dryness, hyperpigmentation from inflammation, and aging symptoms.

Some of the common symptoms of an impaired barrier function may be the following:

- Flaking—A typical sign of dehydrated skin.
- Tightness—A sensation that occurs when the barrier has been damaged, such as the feeling of tightness of the body skin that may be experienced after a soapy or hot bath.
- Redness—Inflammation that often occurs because the barrier is unable to protect against irritants penetrating the skin.
- Itchiness—Winter itch is classic barrier function damage. The damaged barrier function affects nerve endings, causing itching. When the dehydrated skin is scratched to relieve the itching, the barrier function may be further injured, and inflammation and redness can result or worsen.
- Stinging—Stinging may result from irritants easily penetrating the skin and inflaming the nerve endings.

Does the barrier function affect the esthetic appearance of the skin?

Yes! If the barrier is fully intact and healthy, the skin will hold moisture well, which makes skin look more supple, firmer, and younger.

Impaired barrier function can make skin look chapped and more wrinkled with many fine lines, and reflect light abnormally. Deep wrinkles and expression lines are
accentuated. Skin with poor barrier function is often said to look somewhat “deflated.”

Impaired barrier function can also lead to redness due to irritant reactions. The redness associated with rosacea and sensitive skin is often related to impaired barrier function.

Q **Can the barrier function be improved?**
A Yes. Using protective emollient products, such as a good moisturizer with emollient protectants such as silicone or petrolatum, will not only protect the barrier from damage, but it will also allow the skin to repair the damaged barrier lipid layer through the cell renewal process.

Products that contain lipid components can help to supplement the missing lipids in damaged skin. For much more on treating dry skin and barrier damage see Chapter 5.

Q **Why does the skin make oil (sebum)?**
A Deep in the reticular dermis, near the bottom of the hair follicle, are the sebaceous glands, which secrete (produce) sebum, a complex of oily and waxy components. The sebum exits to the surface of the skin via the follicle canal. The entire structure of the follicle is called the pilosebaceous unit.

The purpose of sebum is controversial. Some scientists think that it is secreted as an additional surface barrier to help prevent dehydration of the skin. Some think it is a leftover from human evolution. Some think that it has no real purpose. What is known is that skin that is alipidic (does not produce much sebum) has a strong tendency to become dehydrated, which supports the first theory.

Q **Why does the skin have pores?**
A Pores are simply openings or orifices of the sebaceous follicles on the surface of the skin. The pore is not the entire structure, just the opening itself.
Q Why do some people have bigger pores than others?
A The size of the pore is determined by the amount of sebum being produced and flowing down the follicular canal. The more sebum produced, the more the follicle and pore stretch to accommodate the quantity of sebum being secreted. Follicles that are clogged with keratinized cells and fatty materials will have larger pores due to the stretching of the follicle walls from the amount of debris in the canal.

Q Is there a difference between facial and body skin?
A Yes, there many differences, and there are even differences in the skin in different areas of the body:
 ■ There are more sebaceous glands on the face, but there also lots of sebaceous glands in the skin on the scalp, chest, and back. Anywhere there is hair, there are sebaceous glands.
 ■ The sweat glands are more numerous in the palms of the hands and soles of the feet than anywhere else in the body’s skin.
 ■ The skin on the face tends to be more sensitive and reactive than body skin.
 ■ The muscles under the facial skin are attached to the skin so that facial expressions can be made. You cannot make expressions with your arm!
 ■ Body skin tends to be drier than facial skin. Perhaps this is because there are fewer sebaceous glands on the body, or perhaps it is because people generally take better care of their facial skin than they do their body skin.
 ■ Acne most often occurs on the face but can also affect the chest, scalp, back, and even the legs.

Q Are there differences between male and female skin?
A There are many differences between male and female skin, but most are due to hormones, not actual anatomical differences.
It is often hard to look at the face of an infant and know if the child is a boy or a girl. This certainly changes at puberty, and puberty is when the sex hormones begin producing the adult sex characteristics of women and men.

The beard skin of a man, male pattern baldness, active sebaceous glands, and body hair growth and type are a few examples of these hormonal differences. These characteristics are all typical of androgenic (male hormone) activity. The soft skin of a woman, the fact that women have more glycosaminoglycans in their reticular dermis, and more fat in the subcutaneous layer is also hormonally related, specifically to estrogen and female hormones.

There are abnormalities in hormone activity that can cause females to grow facial hair or lose scalp hair in a typical male pattern. In females, chronic chin acne and melasma (pregnancy mask) and other pigmentary problems are examples of hormone abnormalities that may require medical treatment to correct. Men rarely have melasma, and men can lose body hair from hormonal problems.

Esthetically, men’s skin tends to be oilier than women’s and less likely to become dehydrated. Some differences in male and female esthetic skin issues, such as cellulite and lip wrinkling, are related to both hormonal factors and underlying muscle structure differences between the sexes. Women, percentage-wise, have much more body fat than men.

Men generally do not need as much emollient in their treatment as women and also prefer the feel of a lighter-weight product. Women are more likely to have rosacea, but men are more likely to have phymatous rosacea, the type in which the nose becomes bulbous and the cartilage grows. Sensitive skin is more prevalent in females in general, possibly due to some women’s tendency to overtreat the skin, causing barrier function damage.
Q Why does the skin get hot and cold?

A Temperature regulation is one of the amazing major functions of the skin. Sensory nerves in the skin detect outside heat and cold.

Blood vessels can dilate to pump blood to the skin when the body is overheated, so the blood is closer to the outside of the body and can cool. Sweat is produced by the sudoriferous (sweat) glands, and the evaporation of the sweat cools the skin temperature. Coolness of the skin can be caused by exposure to cold external temperatures, but it also can be caused by reduced blood flow to the skin. That someone may look pale when they are ill shows a reduced skin blood flow at that time. The blood flow is reduced when the body is cold to prevent heat from escaping the body.

Q Why does the skin tan?

A Melanocytes are cells that produce the skin pigment melanin, the material that causes a tan. Melanocytes are mainly located in the basal layer of the epidermis, but they are also in the papillary dermis. In the basal cell layer, melanocytes make up approximately 10% of the cells present. In some darker skin colors, the melanocytes may also be present in the reticular (lower layer) dermis.

Melanocytes produce granules of pigment called melanosomes. The melanosomes contain the actual melanin pigment.

Melanocytes are dendritic cells, which means they have tentacle-like branches. These branches or dendrites enable the melanocytes to “inject” keratinocytes with melanosomes, which gives the skin color, as well as cause a tan.

When the skin is exposed to sun, melanocytes produce pigment as a defense mechanism to shield the cells from damaging UV rays. The melanosome granules produced
by the melanocytes after sun exposure are deposited in the skin directly over the nucleus of the cell. So, a tan may look attractive to some people, but it is actually an immune function!

Q Why are there so many skin colors?

A Skin color is mainly determined by genetic factors we receive from our parents. We inherit the amounts of pigment produced by our individual melanocytes. In skin of color, the melanosomes produced by the melanocytes are much larger. The large melanosomes in black skin are deposited in keratinocytes as large, single melanosomes. In Caucasian skin there are multiple smaller melanosomes in each keratinocyte.

The variety of shades in skin of color has to do with the size of the melanosomes produced by the melanocytes. The color is determined by genetic factors that dictate the mix and amount of melanin produced.

There are two basic types of melanin. **Eumelanin** is a brown-black melanin found in darker skin types and also in black or brown hair. **Pheomelanin** is a red-yellow pigment and is found in red hair. Large melanosomes of eumelanin singly deposited in keratinocytes will absorb a lot of light, making the skin appear darker. Smaller melanosomes absorb less light, allowing skin and hair to reflect more light, and appear lighter in color.

Other factors in the skin that affect skin color are redness due to (arterial) red hemoglobin carrying oxygen in the blood, which may be close to the skin surface in lighter (Fitzpatrick I and II) skin types. The low levels of melanin in these skin types combine with the close blood vessels to produce a redder skin color.

Blue tones in the skin are caused by hemoglobin that is not oxygenated. In other words, this is venous (in the veins) hemoglobin returning to the heart and lungs for more oxygen.
Yellow pigments called carotenoids are from certain foods we eat, such as carrots, that contain this pigment.

The blend of the blue, red, yellow, and the brown coloring from eumelanin mix to an innumerable variety of skin colors and shades.

Q What is collagen and where does it come from?

A Collagen is a protein that is present in the skin in the form of fibers. It is responsible for skin firmness and youthful-looking skin texture. Skin that has been cumulatively sun-damaged has damaged collagen, which results in the appearance of wrinkles and poor skin texture.

Collagen is found in the lower part of the dermis. There are several types of collagen in the skin. If you removed all the water from the skin, collagen would be 70% of what was left. It is a major component of the skin.

Collagen is produced by specialized cells called fibroblasts. Fibroblasts are present in the reticular dermis and produce collagen in the form of chain molecules that look like spiral strings that form a braid-like structure. Collagen is produced by the fibroblasts as three chains that eventually intertwine in a ropelike braid called a helix.

Creams that contain collagen cannot replace damaged dermal collagen. Collagen present in creams simply helps to bind water to the skin surface. The molecules of collagen are too large to penetrate through the skin. Fibroblasts present in the dermis can be stimulated to produce more collagen by certain ingredients such as tretinoin (Retin-A or Renova), long-term use of alpha hydroxy acids, peptides, or botanical stimulant ingredients such as plant extracts *Centella asiatica* and *Echinacea angustifolia*.

Daily use of broad-spectrum sunscreens is the most effective treatment for maintaining quality collagen, as the fibroblasts are protected by UVA sunscreen components such as avobenzone, emcamsule, titanium dioxide, or zinc oxide that stop the deep dermal penetration of UVA.
What is the difference between elastin and collagen?

Collagen and elastin are both protein-based fiber chains present in the dermis. Esthetically, collagen is responsible for skin firmness and turgor, and elastin is responsible for the ability of the skin to stretch and return to its original form.

Estheticians and dermatologists often gently pinch the skin of a client to observe how quickly the skin returns
to its original contour to test skin elasticity. If the “return to normal” takes more than a split second, the skin has damaged elastin fibrils. Like collagen, elastin is produced by the fibroblast cells, but unlike collagen it is produced as two intertwined molecules.

Collagen protein is abundant in the skin dermis, while elastin only comprises a small portion of the reticular dermis.

Elastin fibers are found in the upper dermis, unlike collagen, which is found in the lower dermis. Both the collagen and elastin fibrils are surrounded by ground substance. The ground substance is a gel-like substance comprised of large sugar-related molecules called glycosaminoglycans. These molecules include hyaluronic acid, an extremely strong water-binding molecule.

There is not much known about elastin, but more research is being conducted. At this point, there is only one type of elastin known. Elastin is so important for skin elasticity and aging-skin treatment.

As discussed previously, collagen is fairly easy to produce and helps repair the skin esthetically. Elastin is much harder to stimulate. Micro-current has been shown to stimulate elastin production, and it is believed that some of the same stimulants used for collagen production may help stimulate elastin.

Q How does the skin heal after a cut?

A When the skin is injured, a flood of biochemical reactions take place involving the immune system, the blood, and the fibroblasts. The entire biological process of healing is both complicated and amazing. Here we will give a brief overview of how the many systems of the body and different cells types work together to heal a wound.

In a cut, clotting factors in the blood stop the immediate flow of blood from the injury. The immune system is alerted, sending leucocytes (white blood cells) to the area
to help fight off any possible infection. The fibroblasts from surrounding tissues migrate to the area of injury and begin producing large amounts of collagen to help rebuild the tissue in the injured area. A “scaffolding” is established at first. Eventually the collagen fills in the separated area in the cut.

Small blood vessels begin to form from larger vessels to help bring more blood to the healing area. Blood flow to the area is a crucial part of wound healing; without it, the cells are not provided with many factors that help with wound healing, including transport of immune cells to fight and prevent infection.

The epidermis is regenerated in a process called **re-epithelialization**. Cells that line the follicle walls in the lower part of the reticular dermis begin replicating. These new cells migrate to the surface via the follicle and begin the formation of the epidermal layers. This is also how the skin heals after resurfacing laser treatment or a deep surgical chemical peel.

Wounds heal better when they are kept moist; they are also less likely to form scars. They should be cleaned daily with fresh water, and an antibiotic ointment should be used. Use of an emollient such as petrolatum (petroleum jelly) keeps the wound moist for better healing.

Q Why does the skin sometimes scar after an injury?

A The skin quickly forms fibers to bridge the gap in a cut or injury. These collagen fibers are granular-like to fill in where cells are missing. They are fibers, not cells, and have a different texture than the original tissue.

Over time these collagen fibers will soften and the skin tissue will regain much of its original organization in terms of blood vessels and normal skin function.

It can take up to a year for a scar to soften and become flatter. As the area returns to normal, blood flow is normalized, which makes the scar that is a few months old
look less red. As collagen fibers reorganize in the healed cut, the scar will flatten out.

Raised scars are referred to as **hypertrophic**, and depressed (sunken) scars, which often are called pock-marks, are known as **hypotrophic**.

Hypertrophic scars resolve and become flatter over time as the skin makes an enzyme called **collagenase**, which breaks up excess collagen in the scar, causing a flattening effect. A **keloid** is a hypertrophic scar that does not resolve because the skin hereditarily does not make collagen in a normal way. Keloids require careful and immediate dermatological treatment with steroid injections to help them reduce in size and elevation. Keloid formation is prevalent in skin of color.